Trypanosoma

Resources

DELMIC's in-house application specialists are experts in correlative and cathodoluminescence microscopes, and are continuously working together with scientists in various fields to develop leading innovations in microscopy.

Find here a collection of application notes, technical notes, white papers, and dissertations written by DELMIC's specialists:

Delmic

Journal articles

Hackley, Paul C., et al. "Utilization of integrated correlative light and electron microscopy (iCLEM) for imaging sedimentary organic matter". Journal of Microscopy 0 (2017): 1-13. 

Haring, M. T., Liv, N., et al. "Automated sub-5 nm image registration in integrated correlative fluorescence and electron microscopy using cathodoluminescence pointers". Scientific Reports, 7(1), 2017.

Huan, Y. et al"Photoluminescence Blinking of Single-Crystal Methylammonium Lead Iodide Perovskite Nanorods Induced by Surface Traps", ACS Omega 1 (1), 148–159 (2016).

Debroye, Elke, et al. "Assessing Photocatalytic Activity at the Nanoscale Using Integrated Optical and Electron Microscopy". Particle & Particle Systems Characterization. 33.7 (2016): 412 - 418.  

Kuipers, J., Boer, P. D., & Giepmans, B. N. "Scanning EM of non-heavy metal stained bio-samples: Large-field of view, high contrast and highly efficient immunolabeling". Experimental Cell Research, 337(2), 202-207, (2015).

Liv, Nalan, et al. "Electron microscopy of living cells during in-situ fluorescence microscopy", ACS Nano 10, 265-273 (2016).

Sueters-di Meo, J., et al. "Using advanced correlative microscopy to study complex biological samples in Encyclopedia of Analytical Chemistry", eds R.A. Meyers, John Wiley: Chichester, a9473 (2016).

Yuan, Haifeng, et al. "Degradation of Methylammonium Lead Iodide Perovskite Structures through Light and Electron Beam Driven Ion Migration." The Journal of Physical Chemistry Letters 7 (2016): 561-566.

de Boer, Pascal, Jacob P. Hoogenboom, and Ben NG Giepmans. "Correlated light and electron microscopy: ultrastructure lights up!" Nature methods 12.6 (2015): 503-513.

Brama, Elisabeth, et al. "Standard fluorescent proteins as dual-modality probes for correlative experiments in an integrated light and electron microscope." Journal of Chemical Biology 8.4 (2015): 179-188.

Liv, Nalan, et al. "Scanning electron microscopy of individual nanoparticle bio-markers in liquid." Ultramicroscopy 143 (2014): 93-99.

Peddie, Christopher J., et al. "Correlative and integrated light and electron microscopy of in-resin GFP fluorescence, used to localise diacylglycerol in mammalian cells." Ultramicroscopy 143 (2014): 3-14.

Peddie, Christopher J., et al. "Integrated light and scanning electron microscopy of GFP-expressing cells." Methods in cell biology 124 (2014): 363-389.

Voorneveld, Philip W., et al. "Loss of SMAD4 alters BMP signaling to promote colorectal cancer cell metastasis via activation of Rho and ROCK." Gastroenterology 147.1 (2014): 196-208.

Timmermans F.J., Otto C. "Review of integrated correlative light and electron microscopy". Review of Scientific Instruments 86, 011501, (2015).

Voortman, Lenard M. "Integration Without Compromise." Microscopy Today 22.06 (2014): 30-35.

Liv, Nalan, et al. "Simultaneous correlative scanning electron and high-NA fluorescence microscopy." PLoS One 8.2 (2013): e55707.

Narváez, Angela C., et al. "Cathodoluminescence Microscopy of nanostructures on glass substrates." Optics Express 21.24 (2013): 29968-29978.

Zonnevylle, A. C., et al. "Integration of a high-NA light microscope in a scanning electron microscope." Journal of microscopy 252.1 (2013): 58-70.


Super-resolution correlative microscopy

Johnson, Errin, et al. "Correlative in-resin super-resolution and electron microscopy using standard fluorescent proteins." Scientific reports 5 (2015).

Ligeon, Laure-Anne, et al. "Structured illumination microscopy and correlative microscopy to study autophagy." Methods 75 (2015): 61-68.

Liss, Viktoria, et al. "Self-labelling enzymes as universal tags for fluorescence microscopy, super-resolution microscopy and electron microscopy." Scientific reports 5 (2015).

Paez-Segala, Maria G., et al. "Fixation-resistant photoactivatable fluorescent proteins for CLEM." Nature methods 12.3 (2015): 215-218.

Peddie, C. J., et al. "Correlative super-resolution fluorescence and electron microscopy using conventional fluorescent proteins in vacuo. Journal of Structural Biology", 199(2), 120-131. (2017)

Chang, Yi-Wei, et al. "Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography." Nature methods 11.7 (2014): 737-739.

Löschberger, Anna, et al. "Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution." J Cell Sci 127.20 (2014): 4351-4355.

Perkovic, Mario, et al. "Correlative light-and electron microscopy with chemical tags." Journal of structural biology 186.2 (2014): 205-213.

Sochacki, Kem A., et al. "Correlative super-resolution fluorescence and metal-replica transmission electron microscopy." Nature methods 11.3 (2014): 305-308.

Kopek, Benjamin G., et al. "Correlative photoactivated localization and scanning electron microscopy." PLoS One 8.10 (2013): e77209.

Watanabe, Shigeki, et al. "Protein localization in electron micrographs using fluorescence nanoscopy." Nature methods 8.1 (2011): 80-84.

Websites

http://www.csiro.au/luminescence
Luminescence database for geological materials

http://refractiveindex.info
Database of refractive indices

http://nanophotonics.csic.es
Widgets for calculating transition radiation and surface plasmon generation in a material

http://www.gel.usherbrooke.ca/casino
Electron interaction Monte Carlo simulator


Journal articles

Inorganic materials

Cathodoluminescence Microscopy of Inorganic Solids, B. G. Yacobi and D. B. Holt, Plenum Press (1990).

Cathodoluminescence, Edited by N. Yamamoto, InTech (2018) 


Geology

Cathodoluminescence in Geosciences, M. Pagel et al., Springer (2000).

Application of Cathodoluminescence Imaging to the Study of Sedimentary Rocks, S. Boggs jr. and David Krinsley, Cambridge University Press (2006).

Zircon, J. M. Hanchar and P.W.O. Hoskin, Rev. Mineral. and Geochem. 53 (2003) 1-500.


Nanophotonics

Imaging Electric and Magnetic Modes and Their Hybridization in Single and Dimer AlGaAs Nanoantennas. C. P. T. McPolin, G. Marino, A. V. Krasavin, V. Gili, L. Carletti, C. De Angelis, G. Leo, and A. V. Zayats, Adv. Optical Mater. 2018, 1800664 (2018)

Correlative electron energy loss spectroscopy and cathodoluminescence spectroscopy on three-dimensional plasmonic split ring resonators
I. C. Bicket, E. P. Bellido, S. Meuret, A. Polman, and G. A. Botton, Microscopy, 67, i40–i51 (2018)

Cathodoluminescence as a probe of the optical properties of resonant apertures in a metallic film. K. Singh, E. Panchenko, B. Nasr, A. Liu, L. Wesemann, T. J. Davis, and A. Roberts, Beilstein J. Nanotechnol. 9, 1491-1500 (2018)

Energy-Momentum Cathodoluminescence Spectroscopy of Dielectric Nanostructures. S. Mignuzzi, M. Mota, T. Coenen, Y. Li, A. P. Mihai, P. K. Petrov, R. F. M. Oulton, S. A. Maier, and R. Sapienza, ACS Photonics 5, 1381-1387 (2018)

Cathodoluminescence for the 21st century: Learning more from light.
T. Coenen and N. M. Haegel, Appl. Phys. Rev. 4, 031103 (2017)

Metasurfaces and Colloidal Suspensions Composed of 3D Chiral Si Nanoresonators. R. Verre, L. Shao, N. O. Länk, P. Karpinski, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and M. Käll, Advanced Mater. 29, 1701352 (2017)

Monocrystalline Nanopatterns Made by Nanocube Assembly and Epitaxy.
B. Sciacca, A. Berkhout, B. J. M. Brenny, S. Z. Oener, M. A. van Huis, A. Polman, and E. C. Garnett, Advanced Mater. 29, 1701064 (2017)

Plasmonic Nanolenses: Electrostatic Self-Assembly of Hierarchical Nanoparticle Trimers and Their Response to Optical and Electron Beam Stimuli J. A. Lloyd, S. Hock Ng, A. C. Y. Liu, Y. Zhu, W. Chao, T. Coenen, J. Etheridge, D. E. Gómez, and U. Bach, ACS Nano 11, 1604-1612 (2017)

Near-Infrared Spectroscopic Cathodoluminescence Imaging Polarimetry on Silicon Photonic Crystal Waveguides.
B. J. M. Brenny, D. M. Beggs, R. E. C. van der Wel, L. Kuipers, and A. Polman, ACS Photonics 3, 2112-2121 (2016)

Femtosecond plasmon and photon wave packets excited by a high-energy electron on a metal or dielectric surface.
B. J. M. Brenny, A. Polman, and F. J. García de Abajo, Phys. Rev. B 94, 155412 (2016)

Combined electron energy-loss and cathodoluminescence spectroscopy on individual and composite plasmonic nanostructures .
T. Coenen, D. T. Schoen, B. J. M. Brenny, A. Polman and M. L. Brongersma, Phys. Rev. B 93, 195429 (2016)

A New Cathodoluminescence System for Nanoscale Optics, Materials Science, and Geology.
T. Coenen, S. V. den Hoedt, and A. Polman,
Microscopy Today 24, 12 (2016). Cover Microscopy Today

Directional emission from leaky and guided modes in GaAs nanowires measured by cathodoluminescence. B. J. M. Brenny, D. R. Abujetas, D. van Dam, J. Sánchez-Gil, J. Gómez Rivas, and A. Polman, ACS Photon. 3, 677-684 (2016)


Surface plasmon polariton modes in coaxial metal-dielectric waveguides. M. A. van de Haar, R. Maas, B. J. M. Brenny, and A. Polman, New J. Phys. 18, 043016 (2016)

Controlling magnetic and electric dipole modes in hollow silicon nanocylinders. M. A. van de Haar, J. van de Groep, B. J. M. Brenny, and A. Polman, Opt. Express 24, 2047-2064 (2016)

Direct imaging of hybridized eigenmodes in coupled silicon nanoparticles. J. van de Groep, T. Coenen, S. A. Mann, and A. Polman, Optica 3, 93-99 (2016)

Azimuthally polarized cathodoluminescence from InP nanowires. B. J. M. Brenny, D. van Dam, C. I. Osorio, A. F. Koenderink, J. Gómez Rivas, and A. Polman, Appl. Phys Lett. 107, 201110 (2015)

Angle-resolved cathodoluminescence imaging polarimetry.
C. I. Osorio, T. Coenen, B. J. M. Brenny, A. Polman, and A. F. Koenderink, ACS Photon. 3, 147-154 (2016)

Directional light extinction and emission in a metasurface of tilted plasmonic nanopillars. R. Verre, M. Svedendahl, N. Obedo Länk, Z. J. Yang, G. Zengin, T. J. Antosiewicz, and M. Käll, Nano Lett. 16, 98-104 (2016)

Nanoscale Spatial Coherent Control over the Modal Excitation of a Coupled Plasmonic Resonator System. T. Coenen, D. T. Schoen, S. A. Mann, S. R. K. Rodriguez, B. J. M. Brenny, A. Polman, and M. L. Brongersma, Nano Lett. 15, 7666-7670 (2015)

Robustness of plasmon phased array antennas to disorder. F. Bernal Arango, R. Thijssen, B. C. Brenny, T. Coenen, and A. F. Koenderink, Sci. Rep. 5, 10911 (2015) 

Nanoscale optical tomography with cathodoluminescence spectroscopy. A. C. Atre, B. J. M. Brenny, T. Coenen, A. García-Extarri, A. Polman, and J. A. Dionne Nat. Nanotech. 10, 429-436 (2015)

Cathodoluminescence microscopy: Optical imaging and spectroscopy with deep-subwavelength resolution, T. Coenen, B. J. M. Brenny, E. J. R. Vesseur, and A. Polman, MRS Bulletin 40, 359 (2015)

Gallium Plasmonics: Deep Subwavelength Spectroscopic Imaging of Single and Interacting Gallium Nanoparticles. M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, ACS Nano 9, 2049-2060 (2015)

Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale, C. Colliex, O. Stephan, and M. Kociak, Ultramicroscopy, DOI:10.1016/j.ultramic.2015.11.012 (2015).

Angle-resolved cathodoluminescence nanoscopy, T. Coenen, University of Amsterdam (2014)

Optical properties of single plasmonic holes probed with electron beam excitation. T. Coenen, and A. Polman, ACS Nano 8, 7350-7358 (2014)

Quantifying coherent and incoherent cathodoluminescence in semiconductors and metals. B. J. M. Brenny, T. Coenen, and A. Polman, J. Appl. Phys. 115, 244307 (2014)

Nanoscale excitation mapping of plasmonic patch antennas. A. Motashami, T. Coenen, A. Polman and A. F. Koenderink, ACS Photon. 1, 1134-1143 (2014)

Directional emission from a single plasmonic scatterer.
T. Coenen, F. Bernal Arango, A. F. Koenderink, and A. Polman, Nat. Commun. 5, 3250 (2014)

Experimental verification of n=0 structures for visible light. E.J.R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, Phys. Rev. Lett. 109, 013902 (2013), PRL Editor's choice, Viewpoint in Physics 6, 1 (2013), and highlighted in Science 338, 727 (2012) and Nature 493, 143 (2013)

Resonant Mie modes of single silicon nanocavities excited by electron irradiation.
T. Coenen, J. van de Groep, and A. Polman, ACS Nano 7, 1689-1698 (2013)

Electron beams set nanostructures aglow [PDF], Nature 493, 143 (2013)

The Planar Parabolic Optical Antenna. D. T. Schoen, T. Coenen, F. J. García de Abajo, M. L. Brongersma, and A. Polman, Nano Lett. 13, 188-193 (2012)

Deep-subwavelength imaging of the modal dispersion of light.
R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, Nature Mater. 11, 781-787 (2012)

Dispersive ground plane antennas core-shell type optical monopole antennas fabricated with electron beam induced deposition.
H. Acar, T. Coenen, A. Polman, and L. Kuipers, ACS Nano 6, 8226-8232 (2012)

Signature of a Fano-resonance in a plasmonic meta-molecule's local density of optical states.
M. Frimmer, T. Coenen, and A. F. Koenderink, Phys. Rev. Lett. 108, 077404 (2012)

Polarization-sensitive cathodoluminescence Fourier microscopy.
T. Coenen and A. Polman, Opt. Express 20, 18679 (2012)

Deep-subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas.
T. Coenen, E. J. R. Vesseur, and A. Polman, ACS Nano 6, 1742-1750 (2012)

Plasmonic excitation and manipulation with an electron beam.
E. J. R. Vesseur, J. Aizpurua, T. Coenen, A. Reyes-Coronado, P. E. Batson, A. Polman, MRS Bulletin 37, 752-760 (2012)

Principles of nano-optics, L. Novotny, B. Hecht, Cambridge University Press (2012)

Electron beam imaging and spectroscopy of plasmonic nanoantenna resonances, E. J. R. Vesseur, Utrecht University (2011)

Plasmonic whispering gallery cavities as optical nanoantennas. E. J. R. Vesseur and A. Polman, Nano Lett. 11, 5524-5530 (2011)

Controlled spontaneous emission from plasmonic whispering gallery nanoantennas.
E. J. R. Vesseur and A. Polman, Appl. Phys. Lett. 99, 231112 (2011)

Angle-resolved cathodoluminescence imaging spectroscopy.
T. Coenen, E. J. R. Vesseur, and A. Polman, Appl. Phys. Lett. 99, 143103 (2011)

Imaging of hidden modes in ultra-thin plasmonic strip antennas by cathodoluminescence.
E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, Nano Lett. 11, 4265-4269 (2011)

Directional emission from plasmonic Yagi-Uda antennas probed by angle-resolved cathodoluminescence.
T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, Nano Lett. 11, 3779-3784 (2011) 

Optical excitations in electron microscopy, F. J. García de Abajo, Rev. Mod. Phys. 82, 209 (2010).

Cathodoluminescence plasmon microscopy [PDF], M. Kuttge, Utrecht University (2009)

Classical electrodynamics, J. D. Jackson, John Wiley and Sons (1999).


Bilological CL Imaging

Tb3+-doped LaF3 nanocrystals for correlative cathodoluminescence electron microscopy imaging with nanometric resolution in focus ion beam-sectioned biological samples. K. Keevend, M. Stiefel, A. L. Neuer, M. T. Matter, A. Neels, S. Bertazzo, and I. K. Herrmann Nanoscale 9, 4383-4387 (2017)


Time-resolved CL Imaging

Nanoscale Relative Emission Efficiency Mapping Using Cathodoluminescence g(2) Imaging. S. Meuret, T. Coenen, S. Y. Woo, Y.-H. Ra, Z. Mi, and A. Polman, Nano Lett. 18, 2288-2293 (2018)

Photon bunching reveals single-electron cathodoluminescence excitation efficiency in InGaN quantum wells. S. Meuret, T. Coenen, H. Zeijlemaker, M. Latzel, S. Christiansen, S. Conesa Boj, and A. Polman, Phys. Rev. B 96, 035308 (2017)


Material Sciences:

Correlative Microscopy Characterization of Cesium-Lead-Bromide Thin-films. H. Funk, S. Caicedo-Davila, R. Lovrincic, C. Müller, M. Sendner, F. Lehmann, R. Gunder, A. Franz, M. Wollgarten, B. Haas, C. T. Koch, and D. Abou-Ras.

Microscopic materials properties of a high-efficiency Cu(In,Ga)Se2 solar cell - a case study. M. Krause, A. Nikolaeva, P. Jackson, D. Hariskos, W. Witte, D. Abou-Ras.

Fluctuations in net doping and lifetime in Cu(In,Ga)Se2 solar cells. A. Nikolaeva, M. Krause, J. Marquez, C. Hages, S. Levcenko, T. Unold, W. Witte, D. Hariskos, D. Abou-Ras.

Light Emission Intensities of Luminescent Y2O3:Eu and Gd2O3:Eu Particles of Various Sizes. J. Adam , W. Metzger, M. Koch, P. Rogin, T. Coenen, J. S. Atchison, and P. König, Nanomaterials 7, 26 (2017)

Phase Segregation Enhanced Ion Movement in Efficient Inorganic CsPbIBr2 Solar Cells. W. Li, M. U. Rothmann, A. Liu, Z. Wang, Y. Zhang, A. R. Pascoe, J. Lu, L. Jiang, Y. Chen, F. Huang, Y. Peng, Q. Bao, J. Etheridge, U. Bach, and Y.-B. Cheng, Adv. Energy Mater. 17, 1700946 (2017)

Growth and Luminescence of Polytypic InP on Epitaxial Graphene.
S. Mukherjee, N. Nateghi, R. M. Jacobberger, E. Bouthillier, M. de la Mata, J. Arbiol, T. Coenen, D. Cardinal, P. Levesque, P. Desjardins, R. Martel, M. S. Arnold, O. Moutanabbir, Adv. Funct. Mater. 8, 1705592 (2018)

Efficient Green Emission from Wurtzite AlxIn1−xP Nanowires . L. Gagliano, M. Kruijsse, J. D. D. Schefold, A. Belabbes, M. A. Verheijen, S. Meuret, S. Koelling, A. Polman, F. Bechstedt, J. E. M. Haverkort, and E. P. A. M. Bakkers, Nano Lett. (2018)


Non-peer reviewed journals

Antennes bepalen waarheen en hoe snel een foton uitgezonden wordt. T. Coenen, M. Frimmer, A. Polman, and A. F. Koenderink, Ned. Tijdschrift v. Natuurkunde (Journal of the Dutch Physical Society) 78, 62-66 (2011)

Plasmonic excitation and manipulation with an electron beam. E. J. R. Vesseur, J. Aizpurua, T. Coenen, A. Reyes-Coronado, P. E. Batson, and A. Polman, MRS Bull. 37, 752-760 (2012)

Cathodoluminescence microscopy: Optical imaging and spectroscopy with deep-subwavelength resolution. T. Coenen, B. J. M. Brenny, E. J. R. Vesseur, and A. Polman, MRS Bull. 40, 359-365 (2015)

Our priority at DELMIC is the optimization of research and the dissemination of knowledge. We therefore invite you to contact us in case you have any requests or questions about the above resources. Questions can be directed to Daan van Oosten Slingeland at oostenslingeland@delmic.com.

We produce high-performance microscopy systems for the life sciences and materials science. The SECOM is a correlative light and electron microscope, and the SPARC is a SEM cathodoluminescence system.